
Example: 1D GMM with k Clusters

Cluster 1 Cluster k

Probability of generating a 
point from cluster 1 = 𝜋1

Probability of generating a 
point from cluster k = 𝜋k

Gaussian mean = 𝜇1

Gaussian std dev = 𝜎1

Gaussian mean = 𝜇k
Gaussian std dev = 𝜎k

How to generate 1D points from this GMM:
1. Flip biased k-sided coin (the sides have probabilities 𝜋1, …, 𝜋k)
2. Let Z be the side that we got (it is some value 1, …, k)
3. Sample 1 point from Gaussian mean 𝜇Z, std dev 𝜎Z

…



Example: 2D GMM with k Clusters

Cluster 1 Cluster k

Probability of generating a 
point from cluster 1 = 𝜋1

Probability of generating a 
point from cluster k = 𝜋k

Gaussian mean = 𝜇1

Gaussian covariance = 𝛴1

Gaussian mean = 𝜇k
Gaussian covariance = 𝛴k

How to generate 2D points from this GMM:
1. Flip biased k-sided coin (the sides have probabilities 𝜋1, …, 𝜋k)
2. Let Z be the side that we got (it is some value 1, …, k)
3. Sample 1 point from Gaussian mean 𝜇Z, covariance 𝛴Z

…
2D point 2D point

2x2 matrix 2x2 matrix



GMM with k Clusters

Cluster 1 Cluster k

Probability of generating a 
point from cluster 1 = 𝜋1

Probability of generating a 
point from cluster k = 𝜋k

Gaussian mean = 𝜇1

Gaussian covariance = 𝛴1

Gaussian mean = 𝜇k
Gaussian covariance = 𝛴k

How to generate points from this GMM:
1. Flip biased k-sided coin (the sides have probabilities 𝜋1, …, 𝜋k)
2. Let Z be the side that we got (it is some value 1, …, k)
3. Sample 1 point from Gaussian mean 𝜇Z, covariance 𝛴Z

…



High-Level Idea of GMM
• Generative model that gives a hypothesized way in which data 

points are generated

In reality, data are unlikely generated the same way!

In reality, data points might not even be independent!



–George Edward Pelham Box

“All models are wrong, but some are useful.” 

Photo: “George Edward Pelham Box, Professor Emeritus of Statistics, University of 
Wisconsin-Madison” by DavidMCEddy is licensed under CC BY-SA 3.0



High-Level Idea of GMM
• Generative model that gives a hypothesized way in which data 

points are generated

In reality, data are unlikely generated the same way!

In reality, data points might not even be independent!

• Learning ("fitting") the parameters of a GMM
• Input: d-dimensional data points, your guess for k
• Output: 𝜋1, …, 𝜋k, 𝜇1, …, 𝜇k, 𝛴1, …, 𝛴k

• After learning a GMM:
• For any d-dimensional data point, can figure out probability 

of it belonging to each of the clusters
How do you turn this into a cluster assignment?



k-means
Step 0: Pick k
We’ll pick k = 2

Step 1: Pick guesses for 
where cluster centers are

Example: choose k of 
the points uniformly 

at random to be initial 
guesses for cluster 

centers
(There are many 

ways to make the 
initial guesses)

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat until convergence: 



k-means
Step 0: Pick k

Step 1: Pick guesses for 
where cluster centers are

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)

Repeat until convergence: 



(Rough Intuition) Learning a GMM
Step 0: Pick k

Step 1: Pick guesses for cluster means and covariances

Step 2: Compute probability of each point belonging to each of the 
k clusters

Step 3: Update cluster means and covariances carefully 
accounting for probabilities of each point belonging to each of the 
clusters

Repeat until convergence: 

This algorithm is called the Expectation-Maximization (EM) algorithm 
specifically for GMM's (and approximately does maximum likelihood)

(Note: EM by itself is a general algorithm not just for GMM's)



Relating k-means to GMM's

If the ellipses are all circles and have the same "skinniness" (e.g., 
in the 1D case it means they all have same std dev):

• k-means approximates the EM algorithm for GMM's

• Notice that k-means does a "hard" assignment of each point to 
a cluster, whereas the EM algorithm does a "soft" (probabilistic) 
assignment of each point to a cluster

Interpretation: We know when k-means should work! It should 
work when the data appear as if they're from a GMM with true 
clusters that "look like circles"



k-means should do well on this



But not on this



Learning a GMM

Demo



Automatic Selection of k
Dirichlet Process Gaussian Mixture Model (DP-GMM):

• Number of clusters is effectively random, and can grow with 
the amount of data you have!

• While you don't have to choose k, you have to choose a 
different parameter which says basically how likely new points 
are to form new clusters vs join existing clusters



DP-GMM High-Level Idea
Cluster 1

Probability of generating a 
point from cluster 1 = 𝜋1

Gaussian mean = 𝜇1

Gaussian covariance = 𝛴1

(Rough idea) How to generate points from this DP-GMM:
1. Flip biased ∞-sided coin (the sides have probabilities 𝜋1, 𝜋2, 𝜋3, …)
2. Let Z be the side that we got (it is a positive integer)
3. Sample 1 point from Gaussian mean 𝜇Z, covariance 𝛴Z

Cluster 2

𝜋2

𝜇2

𝛴2

Cluster 3

𝜋3

𝜇3

𝛴3

…
It goes on 

forever!

There is a parameter that controls how 
these 𝜋 values roughly decay

Remark: For any given dataset, when learning the DP-GMM, 
there aren't going to be an infinite number of clusters found

There are an infinite number of parameters



Automatic Selection of k
Dirichlet Process Gaussian Mixture Model (DP-GMM):

• Number of clusters is effectively random, and can grow with 
the amount of data you have!

• While you don't have to choose k, you have to choose a 
different parameter which says basically how likely you are to 
form new clusters vs try to stick to already existing clusters

• An example of a Bayesian nonparametric model  
(roughly: a generative model with an infinite number of 
parameters, where the parameters are random)



Learning a DP-GMM
Two main approaches:

• Finite approximation where you specify some maximum 
number of possible clusters (the algorithm will find up to that 
many clusters)

• Random sampling approach (no finite approximation needed!)

• Algorithm is somewhat similar to k-means/EM for GMMs

• Algorithm output: very similar to regular GMM fitting

• Algorithm output: a bunch of samples of different cluster 
assignments (can pick one with highest probability)

This is what’s implemented in sklearn

This is what’s implemented in R (package dpmixsim)



Learning a DP-GMM

Demo


